一、涡轮机的原理?
涡轮机是利用流体冲击叶轮转动而产生动力的发动机。可分为汽轮机、燃气轮机和水轮机。
是广泛用做发电、航空、航海等的动力机。涡轮增压器实际上是一种空气压缩机,通过压缩空气来增加进气量。它是利用惯性冲力来增加发动机的输出功率。
二、涡轮机供气原理?
涡轮的工作原理是: 采用专门的压气机将气体在进入气缸前预先进行压缩,提高进入气缸的气体密度,减小气体的体积,这样,在单位体积里,气体的质量就大大增加了,进气量即可满足燃料的燃烧需要,从而达到提高发动机功率的目的。
在发动机排量一定的情况下,若想提高发动机的输出功率,最有效的方法就是多提供燃料燃烧。然而,向气缸内多提供燃料容易做到,但要提供足够量的空气以支持燃料完全燃烧,靠传统的发动机进气系统是很难完成的。因此,提高发动机吸入气体的能力,也就是提高发动机的充气效率就显得尤为重要。
三、管道涡轮机原理?
原理是一种空气压缩机,通过压缩空气来增加进气量。它是利用发动机排出的废气惯性冲力来推动涡轮室内的涡轮,涡轮又带动同轴的叶轮,叶轮压送由空气滤清器管道送来的空气,使之增压进入汽缸。
当发动机转速增快,废气排出速度与涡轮转速也同步增快,叶轮就压缩更多的空气进入汽缸,空气的压力和密度增大可以燃烧更多的燃料,相应增加燃料量和调整一下发动机的转速,就可以增加发动机的输出功率了。
四、庞巴迪摩托艇可以改什么发动机?
庞巴迪摩托艇可以根据需求和适应性改装不同类型的发动机。例如,可以将传统的内燃机发动机改装为更高效的涡轮增压发动机,以提高动力输出和燃油经济性。另外,也可以考虑使用电动发动机,以实现零排放和更低噪音的驾驶体验。
此外,还可以选择使用混合动力系统,将内燃机和电动机结合起来,以提供更好的动力和环保性能。总之,庞巴迪摩托艇的发动机改装取决于个人需求和技术可行性。
五、世界最先进涡轮机?
毫无疑问,目前最先进的在役的军用大推力涡轮风扇发动机有美国的F135,F119和英国的EJ200。
先说说F119吧,F119是人类历史上最早投入使用的推重比超过10的小涵道比加力涡扇发动机,它和F-22组合是美国先进战术战斗机项目的胜利者。F119和竞争者F120经过广泛的地面试验和安装在YF-22和YF-23上的初步飞行试验后,1991年4月,F-22/F119组合被选中。F119的主要性能参数为:最大推力156千牛,中间推力105千牛,总压比35,涵道比0.3,涡轮前温度1577℃~1677℃,最大直径1.13米,长度4.826米,重量 1360千克。F119是美国普惠公司为F-22研制的推重比10一级的加力式涡扇发动机,它采用了普惠公司多年的经验和新研究的技术,在结构和性能上代表了当前最先进的战斗机发动机的水平。去年底,普惠公司为F- 22试飞交付了第一台生产型F119发动机,这标志着F119的工程研制工作即将完成。
六、特斯拉涡轮机,优缺点?
特斯拉涡轮机的效率比普通的叶片涡轮机高得多。缺点的是成本昂贵。但是其最终的经济效益完全可以平衡当初建设的高成本。 特斯拉涡轮机的原理是流体的边界层效应(boundary layer effect),流体受黏滞力影响,会在管壁或者其它物体边缘形成一层很薄的边界层,在边界层内,固定表面的流速为0,离表面越远速度越大。利用这个效应就可以让高速运动的液体带动一组圆盘转动。因此它的效率比普通的叶片涡轮机高得多。
七、特斯拉涡轮机优缺点?
特斯拉涡轮机的效率比普通的叶片涡轮机高得多。缺点的是成本昂贵。但是其最终的经济效益完全可以平衡当初建设的高成本。 特斯拉涡轮机的原理是流体的边界层效应(boundary layer effect),流体受黏滞力影响,会在管壁或者其它物体边缘形成一层很薄的边界层,在边界层内,固定表面的流速为0,离表面越远速度越大。利用这个效应就可以让高速运动的液体带动一组圆盘转动。因此它的效率比普通的叶片涡轮机高得多。
八、特斯拉涡轮机的介绍?
特斯拉涡轮机的效率比普通的叶片涡轮机高得多。缺点的是成本昂贵。但是其最终的经济效益完全可以平衡当初建设的高成本。 特斯拉涡轮机的原理是流体的边界层效应(boundary layer effect),流体受黏滞力影响,会在管壁或者其它物体边缘形成一层很薄的边界层,在边界层内,固定表面的流速为0,离表面越远速度越大。利用这个效应就可以让高速运动的液体带动一组圆盘转动。因此它的效率比普通的叶片涡轮机高得多。
九、特斯拉涡轮机的应用?
特斯拉在专利中宣称,该装置是用于使用流体作为动力介质,以区别于别的流体推进和压缩装置的专利申请(虽然该设备的确可用于这些用途)。 直至2006年,特斯拉涡轮自发明以来还是没有广泛用于商业用途。 然而特斯拉泵自1982年以来一直市售,用来输送具有腐蚀性,高粘度,高剪切力敏感性,含有固体,或是其他泵难以处理的流体。 特斯拉本人并没有接到过大宗生产合同。 在他那个时代的主要困扰,如前所述,是材料学知识和对高温材料研究的贫乏。 当时最好的冶金技术仍不能防止涡轮盘在运转中的扭曲和变形。
今天,在该领域的许多业余的实验已经在有意使用以压缩空气或蒸汽为动力源的特斯拉涡轮机(蒸汽由燃料燃烧产生的热制造,通常来源于汽车的涡轮增压器或太阳能辐射)。 涡轮圆盘的形变问题已被部分解决,主要是归功于新材料的应用,如使用碳纤维来制造涡轮盘。一个很好的例子是PNGinc公司和国际涡轮与动力有限公司都在他们的特斯拉涡轮设计中用到了碳纤维材料。
目前对特斯拉泵有需求的是作为废料泵。因为工厂和研磨厂的普通泵经常会被废料卡住。
特斯拉涡轮的另一需求离心多碟式血泵的研究已经取得了可喜的成果。 生物工程科学家将在21世纪持续对其进行研究。 在特斯拉的年代,传统的涡轮机效率低,因为设计高效率效叶片所需要的空气动力学原理不存在,低质量的材料没法制造出能在极端速度和温度下工作的叶片。 一个传统的涡轮效率取决于其进气和排气压力差,为了达到更高的压力差,必须要极端高温的蒸汽,所以只有高温材料才能创造高效率。 如果涡轮机在室温下用液体工作,那么你可以在排气口使用一个冷凝器来增加压力差。
特斯拉的设计回避了涡轮叶片的主要缺点。 它的确还存在剪切流动的限制等问题。 特斯拉涡轮的一些优点在于适用于低流速和小流量的需求。 为了不在流体吹出圆盘边缘时形成湍流,圆盘要尽可能薄。 因此大流量的机器就需要更多的圆盘。最高效率时,圆盘之间的间距必须接近边界层的厚度,而且由于流体的边界层厚度取决于其粘度和压力,流体性质不同,边界层厚度也不相同,所以一种设计就可用于各种燃料和液体的说法不正确的。特斯拉涡轮机与传统涡轮机的区别仅限于将能量从流体转换到轴上的方式不同而已。实验证明特斯拉涡轮负载越大效率越低。负载小时,流体从进入到排出经历了很大的旋转,在大负载下,这种旋转数量下降并逐渐变得更短。这将增加剪切损失,也降低了效率,因为气体与圆盘的接触更少了。
效率是描述输出功率的。 轻载下高效率而重载下效率损失提高并不只是特斯拉涡轮机的特点。
特斯拉涡轮机的效率预计为60% 。请记住,水轮机的效率是从使用涡轮发,最高不超过95%。记住涡轮的效率和涡轮发动机的循环效率是不同的。轴式涡轮机在如今的蒸汽设备中效率可达60%到70%(西门子公司数据),而整体设备的循环效率也就在25%到42%,而且上限无论如何低于卡诺循环效率。 特斯拉声称,他的一个蒸汽版本的装置将达到95%左右的效率。西屋公司对特斯拉蒸汽涡轮机的实际测试显示每输出1马力小时平均需要38磅蒸汽,对于涡轮来说效率在20%左右,而当代的蒸汽涡轮往往可以达到超过50%效率。流体推进的理论和技术以及热力学的能量转换已在各种专利中现身。 热力学效率是用来衡量相比等熵的情况之下到底工作效率如何的,是理想状态下输入效率和输出效率的比值。 这可以被视为是理想状态下焓的变化和压力变化的比值。(如有翻译错误请数学和物理好的朋友纠正。)
在20世纪50年代, 沃伦赖斯试图重新创建特斯拉的实验,但他在早期测试中没有严格地按照特斯拉的专利设计来制造他的涡轮机(这个机器既不是一个特斯拉多段式涡轮机,也没有特斯拉设计的喷嘴)。赖斯的单级实验系统的工作流体是空气。 早先发布的报告中赖斯的测试表明单级涡轮的效率是36%至41%。他表示如果严格按照特斯拉的设计来测试,预计效率可能会更高。
在赖斯退休之前他完成了特斯拉涡轮机最后的测试并做了大量的关于多级涡轮的层流数据分析。他声明这个设计具有极高的效率(不是连接机器后的整体系统工作效率),在1991年出版了题为“特斯拉的涡轮机”的报告,报告做了以下陈述:
“随着分析结果正确使用,转子层流使用效率是非常高,甚至超过95%。然而,为了实现转子高效率,流量必须尽量小,这意味着高效率的代价是必须要有足够多数量的涡盘,组成一个体型巨大的转子。“
现代多级式有叶涡轮机通常达到60% - 70%的效率,而在实践中大型汽轮发电机组常常表现出90%以上的效率。 在配合了特斯拉的设计后,一定大小的涡形转子使用常规流体(蒸汽,气体或水)也可以达到预想的60%至70%的效率以及更高。(如有翻译错误请工程学好的朋友帮忙纠正。)
十、风力涡轮机怎么使用?
通常情况下,当风通过涡轮机,几乎有一半的空气被迫停留在叶片周围,而不是通过它们,这些风中的能量就丢失了。
传统的风力涡轮机最多只能利用59.3%的风能,这个值被称为贝兹极限(Betzlimit)。风力涡轮机,借鉴喷气发动机技术的设计克服了存在于传统风力涡轮机的一个基本缺陷。风力涡轮机的叶片周围罩上遮蔽物,引导空气通过叶片并使其加速,这增加了电力产量。风力涡轮机就像喷气发动机的进气口。当空气进入时,首先会遇到一套固定的叶片,被称为定子,它能把空气引导进一套可转动的叶片——转子。空气推动转子并出现在另一边,此时空气流动的速度比在涡轮机外流动的速度更慢。遮蔽物做成合适的形状,以便其引导在外面相对流动较快的空气进入转子后面的区域。快速流动的空气加速缓慢移动的空气,使涡轮机叶片后的区域变成低气压,以吸纳更多的空气通过它们。- 相关评论
- 我要评论
-